孟哲,男,1992年10月生,博士,中共党员,陕西铜川人。陕西高校青年创新团队核心成员,西安邮电大学“优秀导师团队”成员,“智能基座”华为云与计算先锋教师。主持陕西省自然科学基础研究计划项目2项(面上项目、青年项目C类)、陕西省教育厅科学研究计划项目2项(青年创新团队项目、自然科学专项项目)、教育部产学合作协同育人项目2项。参与国家自然科学基金面上项目等多项国家级和省部级项目。
2014.09 至 2020.06 西安电子科技大学 博士 本科直博 导师:焦李成教授
2010.08 至 2014.07 西安电子科技大学 学士 优秀本科毕业生
2020.07 至 今 西安邮电大学 通信与信息工程学院 讲师
深度学习理论 高光谱遥感影像处理
2025 | |
---|---|
1 | Zhe Meng*, Qian Yan, Feng Zhao, Gaige Chen, Wenqiang Hua, and Miaomiao Liang, Global-local multigranularity transformer for hyperspectral image classification[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2025, 18: 112-131. (二区)[Link] |
2 | Zhe Meng*, Taizheng Zhang, Feng Zhao, Wenqiang Hua, and Tian Sun, Channel-reduced transformer with cross-region tokenization for hyperspectral image classification[J]. IEEE Signal Processing Letters, 2025, 32: 3112-3116. (三区) [Link] |
3 | Zihan Chen, Miaomiao Liang, Weiwei Wu, Siyu Yang, Zhe Meng, and Lingjuan Yu, An adaptive sparse transformer with convolution mixer for hyperspectral image classification[C]//Proceedings of the 2025 IEEE International Geoscience and Remote Sensing Symposium, Brisbane, Australia, 2025.(EI会议) |
2024 | |
---|---|
1 | Zhe Meng*, Taizheng Zhang, Feng Zhao, Gaige Chen, and Miaomiao Liang, Multiscale super token transformer for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 5508105. (三区)[Link] |
2 | Miaomiao Liang, Xianhao Zhang, Xiangchun Yu*, Lingjuan Yu, Zhe Meng, Xiaohong Zhang, and Licheng Jiao, An efficient transformer with neighborhood contrastive tokenization for hyperspectral images classification[J]. International Journal of Applied Earth Observation and Geoinformation, 2024, 131: 103979. (一区)[Link] |
3 | Jinglu He*, Ruiting Sun, Yingying Kong, Wenlong Chang, Chenglu Sun, Gaige Chen, Yinghua Li, Zhe Meng, and Fuping Wang, CPINet: Towards novel cross polarimetric interaction network for dual-polarized SAR ship classification[J]. Remote Sensing, 2024, 16(18): 3479. (二区)[Link] |
4 | Wenqiang Hua*, Qianjin Hou, Xiaomin Jin, Lin Liu, Nan Sun, and Zhe Meng, A feature fusion network for polsar image classification based on physical features and deep features[J]. IEEE Geoscience and Remote Sensing Letters, 2024, 21: 4012705. (三区)[Link] |
2023 | |
---|---|
1 | Zhe Meng*, Qian Yan, Feng Zhao, and Miaomiao Liang, Multi-scale feature attention and transformer for hyperspectral image classification[C]//Proceedings of the 2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, Athens, Greece, 2023: 1-5. (EI会议)[Link] |
2 | Zhe Meng*, Qian Yan, Feng Zhao, and Miaomiao Liang, Hyperspectral image classification with dynamic spatial-spectral attention network[C]//Proceedings of the 2023 13th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing, Athens, Greece, 2023: 1-4. (EI会议)[Link] |
3 | Miaomiao Liang, Jian Dong, Lingjuan Yu*, Xiangchun Yu*, Zhe Meng, and Licheng Jiao, Self-supervised learning with learnable sparse contrastive sampling for hyperspectral image classification[J]. IEEE Transactions on Geoscience and Remote Sensing, 2023, 61: 5530713. (一区)[Link] |
4 | Feng Zhao, Junjie Zhang*, Zhe Meng, Hanqiang Liu, Zhenhui Chang, and Jiulun Fan, Multiple vision architectures-based hybrid network for hyperspectral image classification[J]. Expert Systems with Applications, 2023, 234: 121032. (一区)[Link] |
2022 | |
---|---|
1 | Zhe Meng*, Licheng Jiao, Miaomiao Liang, and Feng Zhao, A lightweight spectral-spatial convolution module for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 5505105. (三区)[Link] |
2 | Zhe Meng, Junjie Zhang, Feng Zhao*, Hanqiang Liu, and Zhenhui Chang, Residual dense asymmetric convolutional neural network for hyperspectral image classification[C]//Proceedings of the 2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 2022: 3159-3162. (EI会议)[Link] |
3 | Junjie Zhang, Zhe Meng*, Feng Zhao*, Hanqiang Liu, and Zhenhui Chang, Convolution transformer mixer for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 6014205. (三区)[ESI Highly Cited Paper][Link] |
4 | Miaomiao Liang, Huai Wang, Xiangchun Yu*, Zhe Meng, Jianbing Yi, and Licheng Jiao, Lightweight multilevel feature fusion network for hyperspectral image classification[J]. Remote Sensing, 2022, 14(1): 79. (二区)[Link] |
5 | Miaomiao Liang, Qinghua He, Xiangchun Yu*, Huai Wang, Zhe Meng, and Licheng Jiao, A dual multi-head contextual attention network for hyperspectral image classification[J]. Remote Sensing, 2022, 14(13): 3091. (二区)[Link] |
2021 | |
---|---|
1 | Zhe Meng*, Licheng Jiao, Miaomiao Liang, and Feng Zhao, Hyperspectral image classification with mixed link networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2021, 14: 2494-2507. (二区)[Link] |
2 | Zhe Meng*, Feng Zhao, Miaomiao Liang, and Wen Xie, Deep residual involution network for hyperspectral image classification[J]. Remote Sensing, 2021, 13(16): 3055. (二区)[Link] |
3 | Zhe Meng*, Feng Zhao, and Miaomiao Liang, SS-MLP: A novel spectral-spatial mlp architecture for hyperspectral image classification[J]. Remote Sensing, 2021, 13(20): 4060. (二区)[Link] |
4 | Feng Zhao, Junjie Zhang, Zhe Meng*, and Hanqiang Liu, Densely connected pyramidal dilated convolutional network for hyperspectral image classification[J]. Remote Sensing, 2021, 13(17): 3396. (二区)[Link] |
2019 | |
---|---|
1 | Zhe Meng, Lingling Li*, Xu Tang, Zhixi Feng, Licheng Jiao, and Miaomiao Liang, Multipath residual network for spectral-spatial hyperspectral image classification[J]. Remote Sensing, 2019, 11(16): 1896. (二区)[Link] |
2 | Zhe Meng, Lingling Li*, Licheng Jiao, Zhixi Feng, Xu Tang, and Miaomiao Liang, Fully dense multiscale fusion network for hyperspectral image classification[J]. Remote Sensing, 2019, 11(22): 2718. (二区)[Link] |
3 | Miaomiao Liang*, Licheng Jiao, and Zhe Meng, A superpixel-based relational autoencoder for feature extraction of hyperspectral images[J]. Remote Sensing, 2019, 11(20): 2454. (二区)[Link] |
1 | 孟哲,张泰政,赵凤,陈改革,梁苗苗,基于超级词元Transformer的高光谱图像分类方法及装置,中国,申请号:202311761296.4。 |
2 | 孟哲,张泰政,闫芊,赵凤,陈改革,梁苗苗,基于轻量级多尺度Transformer网络的高光谱图像分类方法及系统,中国,申请号:202311760700.6。 |
3 | 孟哲,闫芊,岳攀,赵凤,益琛,陈改革,梁苗苗,基于动态卷积Transformer的高光谱图像分类方法及系统,中国,申请号:202311760963.7。 |
陕西省自然科学基础研究计划,面上项目,2025JC-YBMS-759,基于视觉语言模型的高光谱遥感影像分类方法研究,2025.01-2026.12,在研,主持 |
陕西省自然科学基础研究计划,青年项目(C类),2022JQ-704,基于注意力动态混合连接网络的高光谱遥感影像分类研究,2022.01-2023.12,结题,主持 |
陕西省教育厅科学研究计划,青年创新团队项目,24JP179,基于Mamba模型的高光谱遥感影像分类方法研究,2025.01-2026.12,在研,主持 |
陕西省教育厅科学研究计划,自然科学专项项目,22JK0556,基于视觉Transformer的高光谱遥感影像分类研究,2022.01-2023.12,结题,主持 |
教育部产学合作协同育人项目,西邮-华为智能基座2.0,计算机视觉,2024.01-2025.12,在研,主持 |
教育部产学合作协同育人项目,西邮-华为智能基座,计算机视觉,2022.01-2023.12,结题,主持 |
数据挖掘与智能分析(双语,必修,48/32课时) | (2023, 2024, 2025) |
计算机视觉(选修,32课时) | (2023, 2024, 2025) |
分布式计算及应用(选修,32课时) | (2021, 2022, 2023, 2024, 2025) |
科研训练 | (2021, 2022) |
电子电路CAD技术(选修,32课时) | (2021, ) |
IEEE Transactions on Geoscience and Remote Sensing |
Expert Systems With Applications |
Knowledge-Based Systems |
Journal of King Saud University Computer and Information Sciences |
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing |
International Journal of Digital Earth |
Neurocomputing |
IEEE Sensors Journal |
Remote Sensing |
Scientific Reports |
Sensors |
通信地址: | 西安市长安区西长安街618号 |
电子邮箱: | zhemeng@xupt.edu.cn |
办公地点: | 通院大楼511 |